Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Les ensembles paradoxaux - etude des ensembles paradoxaux, de banach-tarski a dougherty-foreman

Couverture du livre « Les ensembles paradoxaux - etude des ensembles paradoxaux, de banach-tarski a dougherty-foreman » de Kleyntssens Thomas aux éditions Editions Universitaires Europeennes
Résumé:

Un ensemble paradoxal peut être découpé en un nombre fini de morceaux et en déplaçant ceux-ci de manière adéquate, par l'intermédiaire d'un groupe, nous obtenons deux ensembles disjoints et identiques au premier. En utilisant le groupe des isométries, nous dupliquons cet ensemble. Nous étudions... Voir plus

Un ensemble paradoxal peut être découpé en un nombre fini de morceaux et en déplaçant ceux-ci de manière adéquate, par l'intermédiaire d'un groupe, nous obtenons deux ensembles disjoints et identiques au premier. En utilisant le groupe des isométries, nous dupliquons cet ensemble. Nous étudions l'existence de tels ensembles pour ce groupe : la droite ne peut contenir d'ensemble paradoxal ; le plan en contient mais il ne peut être que d'intérieur vide, pour la topologie euclidienne ; dans les espaces topologiques euclidiens canoniques de dimension supérieure ou égale à 3, tout ensemble borné, d'intérieur non-vide est paradoxal (Banach-Tarski). Ce dernier résultat utilise l'axiome du choix. Sans celui-ci nous démontrons, dans ces mêmes espaces canoniques, que deux ouverts non-vides et bornés contiennent chacun un ouvert dense, de telle façon qu'il existe une partition de l'un de ces ouverts denses sur laquelle, en appliquant des isométries adéquates, nous obtenons une partition de l'autre ouvert dense (Dougherty-Foreman). Des résultats intermédiaires sur des espaces topologiques et vectoriels, ainsi que des liens avec les mesures exhaustives et les groupes moyennables sont établis.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.