Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
Dans ce tome 3 de Groupes, Algèbres et Géométrie, les auteurs se penchent une nouvelle fois sur les groupes polyédraux, vus ici comme groupes de Galois entre corps de fractions rationnelles. Le contexte du livre est la théorie des corps de fonctions algébriques d'une variable et des surfaces de Riemann. Les bases de ces théories sont donc développées, en insistant sur le concept de ramification. Le texte offre des démonstrations complètes et détaillées, et donne, afin d'épargner au lecteur la consultation permanente d'autres ouvrages, tous les outils annexes nécessaires : algébriques, analytiques et topologiques ; ce qui le distingue d'autres monographies plus spécialisées. Le livre se termine par une étude fouillée de l'équation de Halphen, qui réalise la synthèse de toutes les idées présentées. Bien que constituant la suite logique des deux premiers tomes, ce tome 3 en est largement indépendant. Cet ouvrage contient nombre de résultats majeurs que l'on trouve rarement prouvés en détail dans un volume unique, comme par exemple le théorème des résidus algébrique, le théorème de séparation des surfaces de Riemann complexes compactes ou la version la plus générale du théorème de Van Kampen. En outre, il propose au lecteur, dans un cadre élémentaire, une introduction au langage géométrique, axée sur les courbes algébriques planes.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Un véritable puzzle et un incroyable tour de force !