Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Deep learning avec Javascript

Couverture du livre « Deep learning avec Javascript » de Francois Chollet et Shanqing Cai et Stanley Bileschi et Eric D. Nielsen aux éditions First Interactive
Résumé:

Plongez au coeur du deep learning avec la nouvelle bibliothèque de Google Tensorflow.js pour JavaScript Tensorflow.js étend la bibliothèque de machine learning open source TensorFlow de Google à JavaScript pour entraîner et déployer des modèles d'apprentissage machine dans un navigateur.... Voir plus

Plongez au coeur du deep learning avec la nouvelle bibliothèque de Google Tensorflow.js pour JavaScript Tensorflow.js étend la bibliothèque de machine learning open source TensorFlow de Google à JavaScript pour entraîner et déployer des modèles d'apprentissage machine dans un navigateur. Accélérée par WebGL, la bibliothèque Tensorflow.js fonctionne également avec le runtime JavaScript côté serveur et fait partie de l'écosystème TensorFlow.

Cette librairie ouvre la porte à de nombreuses possibilités, puisqu'elle peut par exemple exploiter la webcam du navigateur. Et surtout, en mettant le Deep Learning à la portée des développeurs Javascript, il y a de fortes chances pour qu'elle contribue à une accélération de la diffusion du Deep Learning.




Au programme :




TensorFlow.js, une introduction en douceur Pour commencer : Régression linéaire simple dans TensorFlow.js Ajouter de la non-linéarité : Aller au-delà des sommes pondérées Reconnaître les images et les sons à l'aide des réseaux de neurones convolutifs Apprentissage par transfert : Réutiliser des réseaux de neurones pré-entraînés Deep learning avancé avec TensorFlow.js - Travailler avec des données Visualiser des données et des modèles Sous-apprentissage, surapprentissage et flux de travail universel de l'apprentissage automatique Deep learning pour les séquences et le texte Les bases de l'apprentissage par renforcement profond Tester, optimiser et déployer les modèles

Donner votre avis