Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !
Cet ouvrage explore diverses méthodes pour décrire la croissance des fonctions sous-harmoniques. On recherche si la croissance de type Bloch peut être caractérisée au moyen d'intégrales sur des boules ou des ellipsoïdes. On étudie comment les conditions sur la croissance d'une fonction sous-harmonique se répercutent au niveau de la mesure de Riesz, en généralisant plusieurs résultats connus pour les fonctions holomorphes d'une seule variable. L'usage des fonctionnelles analytiques et leur transformation de Fourier-Borel permet d'obtenir différents résultats d'unicité pour des fonctions holomorphes entières à N variables, avec croissance de type exponentiel; pour ces fonctions on présente aussi une méthode d'accélération de convergence de leur série de Taylor. L'ouvrage s'adresse à des doctorants ou enseignants-chercheurs en analyse mathématique. Certains aspects sont déjà accessibles à des étudiants de master.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Des incontournables et des révélations viendront s'ajouter à cette liste au fil des semaines !
A gagner : des exemplaires de cette BD jeunesse sur fond de légendes celtiques !
L'autrice coréenne nous raconte l'histoire de son pays à travers l’opposition et l’attirance de deux jeunes adolescents que tout oppose
Mêlant la folie à l’amour, l’auteur nous offre le portrait saisissant d’une « femme étrange » bousculant les normes binaires de l’identité sexuelle