Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
Un grand nombre des systèmes dynamiques est gouverné par des paramètres dont les descriptions sont complexes. Dans la plupart des cas, ces paramètres sont pratiquement difficiles à identifier. Ainsi, notre travail s'inscrit dans l'optique de la détermination des paramètres à retards spécifiques pour lesquels toute perturbation infinitésimale entraine un changement qualitatif sur le comportement global du système. A cet effet, nous étudions des systèmes dynamiques gouvernés par des équations différentielles à multi-retards. Et à l'aide de la théorie des bifurcations de Hopf, nous proposons un schéma numérique permettant de calculer des paramètres retards, critiques décrivant la dynamique transitoire des états asymptotiquement stables vers ceux qui sont instables. Cependant, lorsque les paramètres considérés sont des retards, les points de bifurcation de Hopf ainsi que leurs directions de bifurcation sont difficiles à déterminer. Au vu de ces difficultés, nous développons donc dans ce livre une approche basé sur la théorie des courbes denses. Nous appliquons cette étude à un problème de contrôle thérapeutique du VIH/SIDA.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Un véritable puzzle et un incroyable tour de force !