Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Integrale de chemin en mecanique quantique: introduction

Couverture du livre « Integrale de chemin en mecanique quantique: introduction » de Jean Zinn-Justin aux éditions Edp Sciences
Résumé:

Le but principal de cet ouvrage est de familiariser le lecteur avec un outil, l'intégrale de chemin, qui offre un point de vue alternatif sur la mécanique quantique, mais surtout qui, sous une forme généralisée, est devenu essentiel à une compréhension profonde de la théorie quantique des champs... Voir plus

Le but principal de cet ouvrage est de familiariser le lecteur avec un outil, l'intégrale de chemin, qui offre un point de vue alternatif sur la mécanique quantique, mais surtout qui, sous une forme généralisée, est devenu essentiel à une compréhension profonde de la théorie quantique des champs et de ses applications, qui vont de la physique des interactions fondamentales, à la mécanique statistique des transitions de phase, ou aux propriétés des gaz quantiques.
L'intégrale de chemin est un outil puissant pour l'étude de la quantique mécanique, car elle met en correspondance de façon très explicite les mécaniques classique et quantique. Ainsi l'intégrale de chemin permet-elle une compréhension intuitive et un calcul simple des effets semi-classiques tant du point de vue de la diffusion que des propriétés spectrales ou de l'effet tunnel. La formulation de la mécanique quantique basée sur l'intégrale de chemin, si elle peut paraître plus compliquée du point de vue mathématique, puisqu'elle se substitue à un formalisme d'équations aux dérivées partielles, est bien adaptée à l'étude de systèmes à un nombre grand de degrés de liberté où un formalisme de type équation de Schrödinger est beaucoup moins utile.
Beaucoup des sujets et méthodes de calcul présentés dans cet ouvrage ont donc été choisis parce qu'ils avaient une généralisation simple à la théorie quantique des champs ou à la mécanique statistique, même s'ils ne sont étudiés que dans le cadre de la mécanique quantique à un petit nombre de particules.

Donner votre avis