"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
Nous nous intéressons à la recherche et au calcul numérique de solutions faibles (au sens des fonctions généralisées) de l'équation de transport non linéaire. Des rappels sur les fonctions généralisées nous permettent d'introduire leur produit tensoriel. Un des résultats clés (pour déterminer ultérieurement les solutions faibles cherchées) donne des conditions suffisantes pour que, lorsqu'une somme de fonctions généralisées (de type produit d'Heaviside ou de Dirac) est associée à 0, chacun des termes de la somme est nul. Grâce à ces résultats théoriques, on résout le problème de Riemann 2D à l'aide d'un solveur s'écrivant comme produit tensoriel de fonctions type Heaviside (ou comme somme de produit tensoriel de fonctions type Heaviside) afin d'obtenir les solutions faibles. Ces solutions faibles permettent la construction des schémas numériques de type Godunov 2D. Nous les validons par des test numériques comparant les résultats obtenus par ces schémas 2D et ceux de la méthode du splitting. Ces tests montrent que les schémas numériques 2D sont aussi fiables que ceux par splitting, alors qu'ils sont plus simples dans leur écriture.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !