Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Symetrie miroir des espaces projectifs a poids

Couverture du livre « Symetrie miroir des espaces projectifs a poids » de Mann-E aux éditions Editions Universitaires Europeennes
Résumé:

Inspiré par les travaux des physiciens Witten, Dijkgraaf, E.Verlinde et H.Verlinde, Dubrovin a défini, en 1991, la structure de Frobenius sur une variété complexe. Les variétés de Frobenius sont des variétés complexes munies d'une métrique plate et d'un produit sur le fibré tangent complexe qui... Voir plus

Inspiré par les travaux des physiciens Witten, Dijkgraaf, E.Verlinde et H.Verlinde, Dubrovin a défini, en 1991, la structure de Frobenius sur une variété complexe. Les variétés de Frobenius sont des variétés complexes munies d'une métrique plate et d'un produit sur le fibré tangent complexe qui satisfont certaines conditions de compatibilité. En 2001, Barannikov a montré que la variété de Frobenius provenant de la cohomologie quantique de l'espace projectif complexe de dimension n est isomorphe à la variété de Frobenius associée à un certain polynôme de Laurent. L'objectif de cette thèse est de généraliser ce résultat. Plus précisément, étant donné des entiers strictement positifs, nous montrons que la structure de Frobenius obtenue sur la cohomologie quantique orbifolde de l'espace projectif de poids est isomorphe à celle obtenue à partir d'un certain polynôme de Laurent qui est appelé modèle de Landau-Ginzburg miroir.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.