Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Stabilisation et observation des systemes fractionnaires - theorie et applications

Couverture du livre « Stabilisation et observation des systemes fractionnaires - theorie et applications » de Ndoye Ibrahima aux éditions Editions Universitaires Europeennes
Résumé:

Dans ce mémoire, nous avons proposé une méthode basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman pour garantir des conditions suffisantes de stabilisation asymptotique pour une classe de systèmes non linéaires fractionnaires. Nous avons étendu ces résultats dans la... Voir plus

Dans ce mémoire, nous avons proposé une méthode basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman pour garantir des conditions suffisantes de stabilisation asymptotique pour une classe de systèmes non linéaires fractionnaires. Nous avons étendu ces résultats dans la stabilisation asymptotique des systèmes non linéaires singuliers fractionnaires et proposé des conditions suffisantes de stabilité asymptotique de l'erreur d'observation dans le cas de l'étude des observateurs pour les systèmes non linéaires fractionnaires et singuliers fractionnaires. Pour les systèmes non linéaires à dérivée d'ordre entier, nous avons proposé par l'application de la généralisation du lemme de Gronwall-Bellman des conditions suffisantes pour : la stabilisation exponentielle par retour d'état statique et par retour de sortie statique, la stabilisation exponentielle robuste en présence d'incertitudes paramétriques et la commande basée sur un observateur. La technique de stabilisation basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman est étendue aux systèmes non linéaires fractionnaires et aux systèmes non linéaires singuliers fractionnaires.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.