Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Spark ; valorisez vos données en temps réel avec Spark ML et Hadoop

Couverture du livre « Spark ; valorisez vos données en temps réel avec Spark ML et Hadoop » de Romain Jouin aux éditions Dunod
  • Date de parution :
  • Editeur : Dunod
  • EAN : 9782100794324
  • Série : (-)
  • Support : Papier
Résumé:

Depuis 2015, Spark s'impose comme le standard de-facto pour le big data : en apportant simplicité d'usage, puissance de calcul, analyses en temps réel, algorithmes de machine learning et deep learning, le tout accessible en Python. Spark est devenu la porte d'entrée incontournable des projets... Voir plus

Depuis 2015, Spark s'impose comme le standard de-facto pour le big data : en apportant simplicité d'usage, puissance de calcul, analyses en temps réel, algorithmes de machine learning et deep learning, le tout accessible en Python. Spark est devenu la porte d'entrée incontournable des projets de valorisation de données.

Alors que vient de sortir Spark 3avec son lot d'innovations (Koalas, DeltaLake, et gestion des GPU), les environnements simplifiés « clicks boutons » sont légion (DataBricks, Dataiku, RapidMiner, etc.). Mais pour les utiliser à bon escient, il vous faudra comprendre son fonctionnement interne de Spark afin de paramétrer correctement votre cluster et vos applications.
C'est ce que propose ce livre : vous emmener dans une compréhension fine des tenants et aboutissants de Spark.

L'analyse des données n'est utile que dans des cas business précis. C'est pourquoi nous insistons sur une méthode d'analyse des données qui vous permettra de connaître les étapes d'un projet de machine learning, et les questions indispensables à se poser pour réussir une analyse pertinente. Nous l'illustrons via un exemple complet d'une entreprise (virtuelle) de location de vélo en libre service.

Ainsi, en lisant ce livre, vous maîtriserez l'outil et la méthode adéquats pour valoriser vos données de manière éclairée, vous assurant une meilleure efficacité et rentabilité de vos projets data.

Le code du livre est disponible sur Github.

Donner votre avis

Récemment sur lecteurs.com