Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Python and HDF5

Couverture du livre « Python and HDF5 » de Andrew Collette aux éditions O`reilly Media
  • Nombre de pages : (-)
  • Collection : (-)
  • Genre : (-)
  • Thème : Non attribué
  • Prix littéraire(s) : (-)
Résumé:

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.


Through real-world... Voir plus

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.


Through real-world examples and practical exercises, you´ll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you´re familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.


Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5´s hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5´s type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.