Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
Les graphes de Di Francesco-Zuber du système SU(3) généralisent les diagrammes de Dynkin ADE du modèle SU(2) dans la classi cation des fonctions de partition invariantes modulaires en théorie des champs conformes CFT. On présente les di erents outils algébriques qui permettent de construire la géométrie qui décrit les symétries quantiques associées à chaque graphe. D''abord on étudie les propriétés spectrales et on analyse la structure d''algèbre de chaque graphe G quand celui-ci posséde self-fusion. Ensuite on retrouve d''une manière algébrique les invariants modulaires de type I associés aux graphes sous- groupes et ceux de types II des graphes modules. On donne ensuite une réalisation algébrique de l''algèbre d''Ocneanu des symétries quantiques et le graphe d''Ocneanu Gamma(G ) correspondant. On a représenté chaque invariant modulaire par un diagramme qui code le spectre du graphe et la structure de son algèbre des symétries quantiques. L''ensemble des constantes de structures (nimreps) qui caractérisent toutes les algèbres étudiées sont interprétées en terme de CFT dans di erents environnements. Des données sur les structures d''algèbres de Hopf faibles sont aussi analysées.
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
Si certaines sont impressionnantes et effrayantes, d'autres sont drôles et rassurantes !
A gagner : la BD jeunesse adaptée du classique de Mary Shelley !
Caraïbes, 1492. "Ce sont ceux qui ont posé le pied sur ces terres qui ont amené la barbarie, la torture, la cruauté, la destruction des lieux, la mort..."
Un véritable puzzle et un incroyable tour de force !