Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Data science par analyse des données symboliques

Couverture du livre « Data science par analyse des données symboliques » de Carole Toque et Filipe Afonso et Edwin Diday aux éditions Technip
  • Date de parution :
  • Editeur : Technip
  • EAN : 9782710811817
  • Série : (-)
  • Support : Papier
Résumé:

Une nouvelle façon d'analyser les données classiques, complexes et massives à partir des classes Applications avec Syr et R La numérisation croissante de notre société alimente des bases de données de taille grandissante (Big Data). Ces données sont souvent complexes (hétérogènes et... Voir plus

Une nouvelle façon d'analyser les données classiques, complexes et massives à partir des classes Applications avec Syr et R La numérisation croissante de notre société alimente des bases de données de taille grandissante (Big Data). Ces données sont souvent complexes (hétérogènes et multi-tables) et peuvent être la source de création de valeur considérable à condition qu'elles soient exploitées avec des méthodes d'analyse adéquates. Un « Data Scientist » a justement pour objectif d'extraire des connaissances de ce type de données et c'est l'objectif de cet ouvrage.

Les classes constituent un pivot central de la découverTe de connaissances. En Analyse des Données Symboliques (ADS), les classes sont décrites par des variables dites symboliques prenant en compte leur variabilité interne sous forme de distributions, d'intervalles, d'histogrammes, de diagrammes de fréquences, etc.

Le livre débute par la construction de différents types de variables symboliques à partir de classes données. Des statistiques descriptives, une méthode de discrétisation automatique adaptée aux données massives (Big Data) suivies par des indices de proximité étendus aux données symboliques y sont présentés. Vient ensuite un ensemble de méthodes présenté dans le contexte de l'ADS. Il s'agit de la méthode des nuées dynamiques (MND), de la décomposition de mélange par partition (issue de la MND) ou par partition floue (EM), de l'analyse en composantes principales, de l'algorithme Apriori, des règles d'association et des arbres de décision. Pour la prévision, le livre présente des méthodes de régressions dont celles pénalisées « ridge », « lasso » et « elastic », et des séries temporelles.

Pour la mise en application de ces premières méthodes, des exercices et des applications concrètes réalisées auprès d'administrations, d'industriels, de financiers et de scientifiques sont proposés. Leur mise en oeuvre s'appuie aussi bien sur le logiciel innovant Syr que sur le logiciel statistique R.

Cet ouvrage d'introduction à l'ADS s'adresse aux étudiants, aux ingénieurs, aux universitaires, ainsi qu'à tous ceux qui désirent comprendre cette nouvelle façon de penser en Science des Données.

Donner votre avis