Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

Beedea's performance on knapsack problem - study of the performance of the balanced explore exploit

Couverture du livre « Beedea's performance on knapsack problem - study of the performance of the balanced explore exploit » de Zardi Hedia aux éditions Editions Universitaires Europeennes
Résumé:

Most real world problems require the simultaneous optimization of multiple, competing, criteria (or objectives). In this case, the aim of a multiobjective resolution approach is to find a number of solutions known as Paretooptimal solutions. Evolutionary algorithms manipulate a population of... Voir plus

Most real world problems require the simultaneous optimization of multiple, competing, criteria (or objectives). In this case, the aim of a multiobjective resolution approach is to find a number of solutions known as Paretooptimal solutions. Evolutionary algorithms manipulate a population of solutions and thus are suitable to solve multi-objective optimization problems. In addition parallel evolutionary algorithms aim at reducing the computation time and solving large combinatorial optimization problems. In this work we study the performance of the Balanced Explore Exploit Distributed Evolutionary Algorithm (BEEDEA) [1] on the multi-objective Knapsack problem which is a combinatorial optimization problem. BEEDA is implemented after some improvements and tested on the Knapsack problem. Key words: multi-objective optimization, evolutionary algorithms, Knapsack problem, distributed metaheuristics.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.