Résumé:
Nous assistons de nos jours à une explosion de la quantité de données électroniques existantes. C'est pourquoi, nous devons avoir recours à des outils automatiques qui sont à même d'analyser automatiquement les données et de ne nous fournir que l'information pertinente et résumée par rapport à... Voir plus
Nous assistons de nos jours à une explosion de la quantité de données électroniques existantes. C'est pourquoi, nous devons avoir recours à des outils automatiques qui sont à même d'analyser automatiquement les données et de ne nous fournir que l'information pertinente et résumée par rapport à ce qui est recherché. Malheureusement, les techniques de forage de données nécessitent généralement un temps de calcul considérable afin d'analyser un large volume. Par ailleurs, si les données sont géographiquement distribuées, les regrouper sur un même site pour y créer un modèle peut s'avérer très coûteux. Pour résoudre ce problème, nous proposons de construire plusieurs modèles, et plus précisément plusieurs classificateurs, soit un classificateur par site. Ensuite, les règles constituant ces classificateurs sont regroupées puis filtrées en se basant sur certaines mesures statistiques et une validation effectuée à partir de très petits échantillons provenant de chacun des sites. Le modèle résultant, appelé méta-classificateur, est, d'une part, un outil de prédiction pour toute nouvelle instance et, d'autre part, une vue abstraite de tout l'ensemble de données.
Donner votre avis