Passionné(e) de lecture ? Inscrivez-vous gratuitement ou connectez-vous pour rejoindre la communauté et bénéficier de toutes les fonctionnalités du site !  

La peur exponentielle

Couverture du livre « La peur exponentielle » de Benoit Rittaud aux éditions Puf
  • Date de parution :
  • Editeur : Puf
  • EAN : 9782130633693
  • Série : (-)
  • Support : Papier
Résumé:

C'est une nouvelle venue à ajouter à la liste de nos peurs collectives, et son objet est des plus inattendus : un concept mathématique abstrait. Déclinable à l'infini, la peur de l'exponentielle est une réalité contemporaine aussi répandue que méconnue. Scientifiquement construite bien que... Voir plus

C'est une nouvelle venue à ajouter à la liste de nos peurs collectives, et son objet est des plus inattendus : un concept mathématique abstrait. Déclinable à l'infini, la peur de l'exponentielle est une réalité contemporaine aussi répandue que méconnue. Scientifiquement construite bien que parfaitement irrationnelle, elle constitue la matrice originelle de quantité de discours alarmistes fondés sur la crainte que nous irions collectivement bientôt heurter de plein fouet les limites du monde : épuisement des ressources naturelles, démographie mondiale, réchauffement climatique. La première partie s'intéresse à la structure de la peur.
Affirmer le caractère exponentiel d'un phénomène permet à peu de frais de prophétiser une catastrophe. La seconde partie mène une critique de cette peur, qui peut conduire au rejet de l'autre (peurs démographiques, critique du «juif usurier»). La troisième partie s'intéresse à l'histoire des représentations sociales liées : idée de croissance proportionnelle sous-jacente au «passage du local au global», étroitesse supposée du monde, visions anciennes de l'exponentielle comme créatrice de richesses (par exemple grâce à la magie des intérêts composés), et établit un lien avec le «désir mimétique» de René Girard.
La dernière partie propose des pistes pour surmonter la peur : dépassement de la sidération causée par les grands nombres de l'exponentielle, reconsidération de notre rapport au temps et à l'infini.

Donner votre avis