"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'objectif de cet ouvrage est de vous expliquer les concepts fondamentaux du Deep Learning et de vous montrer, grâce à de nombreux exemples de code accessibles en ligne, comment les mettre en pratique.
Cette deuxième édition très remaniée tient notamment compte de la nouvelle version de TensorFlow 2, outil open source très efficace pour entraîner des réseaux de neurones artificiels.Construire et former de nombreuses architectures de reseaux de neurones pour classification et regression à l'aide de TensorFlow 2.Découvrir la détection d'objets, la segmentation sémantique, les mécanismes d'attention, les modèles de langage, les réseaux anatagonistes génératifs, etc.Explorer l'API Keras, l'API officielle de haut niveau pour TensorFlow 2.Produire des modèles TensorFlow à l'aide de TF Data, de TF Transform, de l'API de stratégies de distribution et de TF Serving.Déployer sur la plateforme Google Cloud AI ou sur des appareils mobiles.Créer des agents d'apprentissage autonomes avec le Reinforcement Learning, y compris en utilisant la bibliothèque TF-Agents.Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l'adresse suivante : https://github.com/ageron/handson-ml2
Il n'y a pas encore de discussion sur ce livre
Soyez le premier à en lancer une !
"On n'est pas dans le futurisme, mais dans un drame bourgeois ou un thriller atmosphérique"
L'auteur se glisse en reporter discret au sein de sa propre famille pour en dresser un portrait d'une humanité forte et fragile
Au Rwanda, l'itinéraire d'une femme entre rêve d'idéal et souvenirs destructeurs
Participez et tentez votre chance pour gagner des livres !